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BurneR's equations for a multicomponent gas mixture when there are external forces present which do not depend on the velocities 
and internal energies of the molecules are obtained using the system of kinetic equations in the quasiclassical spherically 
symmetrical approximation for the case of light exchanges of translational and internal energies of the molecules in the single- 
liquid approximation, when the system of gas-dynamic equations consists of equations for the concentration of the chemical 
components, the mean-mass velocity and the mean temperature. Exact and approximate formulae are obtained for the Burnett 
transport coefficients. Special cases, including the question of the general equations of thermal-stress and concentration-stress 
convection are considered. © 2000 Elsevier Science Ltd. All rights reserved. 

Burnett's equations have mainly been derived (see the review [1] and later papers [2, 3]) for a simple 
gas [4, 5]. The most complete derivation of the expressions for the Burnett transport properties of 
multicomponent mixtures of monatomic gases, i.e. gases consisting of molecules with frozen internal 
degrees of freedom [6],:~ is refined and extended below, the results are represented in a more effective 
form, and both exact and approximate "working" expressions are obtained. 

1. I N I T I A L  R E L A T I O N S  

The system of kinetic equations employed here has the form [5, 7, 8] 

Ofn . ~fo Fia 3fn 
+ ~ i a ~ - - +  . . . .  L o ( f f  ) & ara 

(1.1) 

Here fn = f(~, En, r, t) is the number of molecules of the ith chemical sort in internal state to at the 
instant of time t in an element of volume of the phase space (r, ~.); ~. and m i are the velocity and mass 
of a molecule, Eo is its internal energy, g2 = ito, Lo is the operator of elastic and inelastic binary collisions, 
and i, j = 1, 2 . . . . .  S, where S is the number of chemical components; the components of the radius 
vector r are introduced by the subscripts a, 13, % and the usual rules of summation over repeated 
subscripts are used. 

The Chapman-Enskog method gives the expansion 

m = 0  ra=O 

: m ~3/2 
f/to) n x i | ~ /  exp(-w2), ni ,  w 2 mic2 

• = \ ] t Zlt, g l -  Xi = -  = n 2kT (1.2) 

Yn(T)=g°exp(-~o ), Qi =y .  goexp(-go),  gn =E O 
Qi ~ kT 

In (1.2) the natural velocities of the molecules ci = ~,/- u and go is a degeneration of the f2-1evel. 
Henceforth we will use the following operations with Yn(T)  

tPrikl. Mat. Mekh. Voi. 64, No. 4, pp. 590--604, 2000. 
¢See also: Shavaliyev, M. Sh., Transport phenomena in gas mixtures in the Burner  and super-Burnett approximations, Candidate 

dissertation, 01.02.05, Novosibirsk, 1978. 
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dYn v. .  
ar=r '"  ~n, ~n =~n-(~oL, (NL =Y.o, Nr~ 

y ~ .._~_dYn_c~ ((A~o)2) =c~. dfA~) 2 = Ae n c~ (1.3) 
O) 

c ~ = l + ~ q , ,  q, =E  x:~, E; =k +(~nL 
i 

Here and below N means any quantity on which the operator considered acts, (ea)~ is the mean internal 
energy of molecules of the ith sort and cu is the heat capacity due to the internal degrees of freedom 
at constant volume. 

Expansion (1.2) enables us to close the system of gas-dynamic equations which, in the case of light 
exchanges, has the form [7.8] 

a au c, D...pp+pVu=O, _D ffi ~ . + %  ara 
n t  n t  at ~-ra, Vu-- ,- (1.4) 

D x  i + aJia - S a J  ja S S 
Dt ar a xi ~" . . . .  O, n = ~, n i, p = ~, min i (1.5) 

)=1 ~rot i=1 i=1 

Du a +  Op + O ' C ~ -  s 

3 , DT aqa au a s [ 

or~ i=l 

In (1.7) we have used the same notation as in (1.3). System 
dynamic variables can be calculated from the formulae 

n i=( fo ) ,= f f (~° ) ) , ,  ( N ) , =  Z 

+e~" as~,] = 
ar~ J o, p = nkT (1.7) 

(1.5) contains S-1 equations. The gas- 

] Ndei (1.8) 

(1.9) 
I s 1 s 

(3 ) =!y =!y ½ 
- + Z  x,.(~n)c kT (U/n), (UI~°))., U= mica+Eta (1.10) 
2 i=1 g l i  n i 

Formula (1.10) defines the mean temperature T. By virtue of (1.8)-(1.10) perturbations qo (r), r ~> 1 
make no contribution to the density, the mean-mass velocity and mean energy. The corresponding 
contributions to the transport properties, i.e. the diffusion velocity Vi, the scalar and non-divergent 
components of the stresses II and lz~13, and the heat flux q, are given by the formulae 

S 
j~r) E n i V [ r )  =(¢if~r)),,  qtr) = y. (¢iLlf(flr)),, r ~  l 

i=l 

l--i,r) : $,_ ' (c?f~.)).. .,r)~,.ff~fl ,=1~ CietCi,--'3Otl~C' JJ~ ). (1.11) 

In (I.II) we have used the notation from (1.2), (1.8) and (1.10) 
The correction of the first approximation, corresponding to the Navier-Stokes approximation, will 

be sought in the form 

f~l) I ¢~o)( . aln T _ s / 
= - n  so ~ aocia "~-'ra + I~nciac,~ea~ +,=,x ~c,.a~ + rnvu -= 

• a T  s 
=- anc~, ~ + nfi~c,q~ + X n~ic,~,a~, + rfivu (1.12) 

j=l 
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For brevity, we ,All mean by the Navier-Stokes approximation the linear approximations for the 
transport properties, and we shall mean by the Navier-Stokes equations the corresponding complete 
system of conservation equations [1]. The structure of solution (1.12) differs from that assumed earlier 
[6--8] in three terms, to determine which a more effective method is employed [5]. 
The following notation is used 

di~=v, .+kxi  p ) Or a kT p j-_, 

"~  =lbua 3rp / (N~)  =2  (Na,+ N ~ a , - I  " # N w  (1.13) 

The functions, A, B, D and F satisfy the equations 

I (o) O) 2 
-- f~ (-S~12(wi )+ AEta)cia =-Rc~(Aca) (1.14) 
n 

I f{n ) 2(wi~ w,~ - Rt~ B(cacp (1.15) ) ( )) 

!-(o)~ (x ,~ t.i{zL~ik-~)=-Ro(D% a) (1.16) 

n 2 2 ~ S ~  (;) 2 _ (1.17) 

Here i, j, k = I, :2,..., S, and Rn(N) is the linearized collision operator [5, 7, 8] related to n 2. 
It can be seen from (1.14)-(1.17) thatA, B, D and F depend on w~, en, T, xi and are independent of 

n (the latter was not taken into account earlier [6]). 
The solutions of system of equations (1.14)-(1.17) are usually sought in the form of series in Sonin 

(n) 2 polynomials S m (wi) and in polynomials which depend on eu, 

An = 2 m i __~kniDri + k#S~ (wi )_7)~._~a Ar~ta +.." 
5 k2Txi 

Bf l = ~ +  .... Oh = mi j o) 2 

-I (I) 2 + ...] r~. 1 ---gi(xikr) [S~ (w i )'l'Oi~t, 1 

(1.18) 

In (1.18) Tli , ~', ~.~,!, ~'oi are the partial shear (dynamic) and volume viscosity coefficients and the partial 
translational and internal thermal conductivities, and D O. and Dri are the diffusion and thermal diffusion 
coefficient of the multicomponent mixture of polyatomic gases (for example, the shear viscosity 
coefficient of the mixture -q = Y.i "qi)- 

We will write the' system of equations for determining the Burnett perturbations ~p(~ in the form 

M n = n2Rfl(¢O(2)), M n = ~If~ 0) + Hta - Lt.l(fO)f (t)) 
~t 

(1.19) 

The inhomogeneous part of integral equation (1.19) Ma includes a group of terms Ha contain- 
ing derivatives of j<l! which can be conveniently expressed in terms of the natural velocities of the 
molecules [4, 5] 

Hrl Oof(~l) + cia + Z~ 
Dt ~ ~ci~ -cifj ~rp ~ci¢ L 

s / _ ~ ] v ~  ~ ~p Do ~o zi~ = Y S 0 * , - = - -  
j=l  p ) rnj p brrL Dt ~t + uct ~r a 

(1.20) 



572 V.S. Galkin 

In (1.19) and (1.20) we have used the expansion a/at = adat + allat + ... 

This expansion is the main feature of the Chapman-Enskog method, but in a number of textbooks on kinetic 
theory it is not mentioned when describing the general algorithm of the method [9, 10]. Moreover, inaccuracies 
in describing the general algorithm occur even in well-known textbooks [4, 5] for the case of unsteady external 
forces. In certain sections of [4, 5] it should have been written that f  (m) depends on r, t not only in terms of the 
hydrodynamic variables but also in terms of F i = F i ( r ,  t), beginning withf <2) for a simple gas and) '(1) for a mixture 
of gases. It can be shown that the requirements of the method are satisfied if the partial derivatives with respect 
to time of the gas-dynamic variables are expanded rather than the partial derivatives with respect to time of the 
known functions Fi~(r, t), i.e. one can use the well-known general algorithm of the Chapman-Enskog method with 
the additional definitions 

aoE._aE a.E=o, n~>l 
at at ' at 

Then, for example, we obtain 

= (  min')Do aln p xi I S nj )DoT Ood,<< 
Dt xi s:l  T F~ Ot (i.2i) 

-xlfOFia -m,~ nj OF~ ] aull ax, 
kTt, Ot ,:, p ~ )-ar~ 3"-~ 

To calculate the derivatives of the gas-dynamic variables from Eqs (1.4)-(1.7) we obtain 

DoP _pVu, Doxi=o, Do% l (  aP s ) 
. . . . .  + E niFiet Dt Dt Dt p ar~ i=J 

DoT 2 T v u  ' a,p_ aix i 1 (  a j i l l  s o__.a_j(i, ) (1.22) 
o ,  = - -D - ,  - o, a ,  : n " + ar,, '<< ) 

etc. As in [4] we obtain Do~Dr of the various combinations of spatial derivatives, in particular 

D°Vu a ll~=' ~Pl aul~au~ (1.23) 
Ot = ar a ; nyF~a --ff-r~r~ ara arfj 

Finally Mn can be expressed in terms of well-known quantities. As is well known, it is not necessary to 
know ~o(~ ) in order to obtain the Burnett transport properties. 

Using the symmetry properties of the operator Rn(~), Eqs (1.14)-(1.17) and the conditions for ~0(~ 
to make no contribution to (1.8)-(1.10), as in [4, 5] we obtain the following formula for Burnett 's 
contributions to the transport properties 

(~(2). rt(2), v(2). t,(2) ~ _ 
tw, ct[~,L~ ,Vkct , t ~ t  ) - -  

. . !  t~ . 
= - n- ~ ~ ~ Bt-l(ciaclli),r'i,i,; D~lcili,Aficil x Mflde i (1.24) 

Hence, each of the transport properties can be expressed in terms of the sum of integrals with respect 
to ci of Mt~ with a corresponding weight. The reduced heat flux, by definition, is 

h~ =q~-krE +(eaL .t~ 
i=l 

(1.25) 

2. T H E  C O N T R I B U T I O N S  OF B U R N E T T ' S  A P P R O X I M A T I O N  
TO T H E  T R A N S P O R T  P R O P E R T I E S  

To determine the contributions we will use the method described in [4], the only difference being that 
we will take x i and Yf~ (1.3) into account. Using formulae (1.12) and (1.8)-(1.25), after carrying out 
fairly lengthy calculations similar to those in [4] we obtain 
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/l:~ =(~! +~)e,llVU+~211~-(~ n/tFt̀p-pp)].a-2uy.ae,/il-U.LpUa.,/>+ 
[~* * 

+(~3 + "~3 )(eoqe-#) + ~4 (T~) + (~s + ~s)(TaTp) + ~- {gsk (ZmTp) + ~Tk (at, p.. ) + k 
+(T,[~,~stXt.p + (~9, + ~;t`)dt`p])} + X (dt`a (~,0~aZtp + ~, ,t`txt.p + {*12tddtp)) (2.1) 

M 

In (2.1) we have used the symbols from (1.13) and (1.20), and summation over k and l is carried out 
from I to S. For brevity, here and below we will use the following notation for the spatial derivatives 

D~",  ( r : p ) ,  -- ~-r,/~-r~ T-r~ j (2.2) U~,p.~t = Drpbrv " . . 

etc. The coefficients with an asterisk are determined by the moments of La(f0)f(0), while those without 
an asterisk are determined by the convective part 

2 [ T DB h " 2 D1iL _Drh] 4 ~ ( 7  i 3gi~ 
~, = ---~--;-~+c~ ---- 3'. --~l----TDr~ +--~I 3(q, Dr ~'v5"5 + ~'73--2 t °ci °ci Jn 3 Pi ~ 2 c v 2 "qi ) 

sf ~Dshl 

4,1_, =  DAa 4 , ,  Dr, , (2.3) 
~4 = {'Ah}11 = Z 5 p, ~l/i' ~5 t Dr j. = Z g ~ ~ ,  v, = xti -t- ilikDT/ 

- fDAh / = - ~  2p~rliD 6 ~6k -- 2[~--~/2 ~ikj p - ~  Ti ik 

11 

1 t` 
~Tk = {D~'lvl = ~' 2"qiXi*, Sit` = Dit` - --'~i n 

~st` l D.~t` J. = Z 

f DD,'t̀  / 

4 rli D¥i 
5 Pi Dxt` 

=2  ~DD~ka ~ 2mi D 8 

- x  2n, 
~ u =  Dxt n ni Dxt 

In (2.3)Ah, etc. are introduced by formula (1.12) in the same way as in [4], and 8/k is the unit tensor. 
By definition 

8 (kT) 3 
{N}q---~ 15 m~n S BflNw~del 

DlnN s 
3 r N  = 3 In T '  y" = y" Pi = nikT (2.4) 

i=l 

Here and below the first expressions for the coefficients (written in terms of {N}n, etc.) are exact 
while the second expressions are approximate, obtained taking into account the terms of expansions 
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in polynomials given in (1.18). The transport coefficients which occur in (1.18) can be regarded as exact 
or corresponding to the given polynomial approximation. The final choice can be made only after making 
comparative calculations. In [6] a smaller number of expansion terms are retained than in (1.18), which 
does not enable the non-zero approximate expressions to be obtained for all the transport coefficients. 

When writing the transport properties we will initially write a group of terms with S = 1 which transfer 
into terms for a simple gas (with coefficients ~ + ~),  then the diffusion terms, equal to zero when S = 1 
(~7k -- ~_~t), after which the terms due solely to the multiatomicity. The latter do not occur in (2.1), and 
the polyatomicity only has a direct effect on ~1 and ~'~. The vector Z/can be expressed [6] in terms of d,- 
using (1.13) and (1.20), but in this case the sequence described breaks down. Note that Zi,~ = p-lp., when 
S = 1. Using the properties of isotropic tensors when carrying out the convolutions, we obtain 

1 ~ k * 1 d k I * 

In (2.5) we have used the operator 

InN)n = kn--YT E fbf t~l-~(HN)del ,  l-~(nq~O)n(P °)) = n2La( f° )  f °~) (2.6) 
fl 

In (2.6) H belongs to the class of g2-particles and N belongs to the other class of ~-particles, and the 
summation is carried out over the index -,It = j~b in L. Approximate expressions for ~*, etc. are obtained 
below in Section 3. 

For the contribution to the scalar part of the stress tensor we obtain 

i l  (2) = (O I + ¢0 / )eal~epa + ¢02V 2T + (¢03 + 03~) (VT)  2 + (034 + 0 4) ( V u )  2 + 

D0Vu 
+035 ~ + E { [f'OekZka + f'07kXk.ct + (¢'Osk + 0~St )dkct ]Ta + O09tVdk } + 

k 

+~, [O~loktZt,~ + (01 iktXt.cL + ¢Ot*2tadta]dkcL (2.7) 
kl 

r~ 2 -- [Aft }~ -- E ~ 0-;~ - o? ,~ + n, kZ:~,) 
P~ 

004=-2[0c i -~ , 2 = c~c~ 0T j=  

m z ~i _ ' Cui 2 ~Or~, +o,  c 
p, 12 3c; , 

co Pi ~2 

L\ i i / )to " 
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,or, : l e~, J. p, L ~x, 

tar  J= 
#k __~. '.09t ffi {DU }<~ = X ~_L lit, li i : niDa ~ xiT~ 

ni 

IC ~ci 2ci ) J= Pi 

f,°.} vl"f l  = ~ ~i ~lik 
~[DI Ikl : ~X I ~ I'll ~X I 

,n;=l{bo~bl~}~, to;=l{a,,a~.}:, o);={IT}: (2.9) 

, I k lldkdt I* 
+d~aa}~, ~i2u 3L a a,~i ,Los k ffi "ff {aad ~ k * . = 

We have used the notation from (2.5) and instead of (2.4) and (2.6) we have introduced the 
operators 

{N}•=- 2--"k2T2Y'3n fi I N'~'Ftiw?dei'mi {HN}; = ~  IFlil_~(HN)del (2.101 

The contribution to the reduced heat flux has the form 

e>= <.,I"+ :'+ ~r,~.:.+ ~"f¢~ L,°~ ~"3~.. +u,..;,]+ 

L~/ek 1- t6k + )',k)d~tVu + Tik - ufs.ad~ + k Dt 

+[YskXk.i ! _,_ (6 ,,(2) • 

+~ {Tio,Z,~ +Yii,x,..}Vu+Ti2(Vu).. (2.11) 

{ - ; ~ c  u OT ~T J, op, tsk¢ L ~T t, T ) 

-.:,,(T~+~.~.,)+ 

. , .  l +o, _l,,+,,., .>.}} 
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]'12) =_2  fC? bA~ / = y. 2mi FZb[l)~.~i _(b~O)_b[l))nikDTi _b[2)~i] 
a t aC? J¥ Skpi L5 

• = - V  2mi tbg)k , -b~°)nikDri _b~a)gi) )'2 =-{Aia}v . . . .  , a 
oxpi 

]'ak = 2Bfi  + c~ ac  2 I,.i~ f _ , . , - -=7 - - -  ~ ~k i / J'l oKPi 

2f  2aBel =~..,41]irk(i)~ 1 ,,.r~,~,~ t.(o):a ,~ _b/(21~i ] 
5 l aT ~.~ z . , ~  "i " r ' "  q i ' -" ,  ~'rqi . m 

= 2 = 5" 4 q ;  ¢bO) _ b:O) ) T5 {c~Ba}v - - ~ . " i  
5kn i 

~* a t ~  Dr J, = 

:Z~[Oikfb(iO'aTO;k 5b(I)+b(2)cui).a. ~ ~.O),.~k~ ,,~,,1 
15KC. L t - 2 '  ' " k - J ' ~ n "  ,i<'r,ili,j 

}{ 
] "a '= -  ~? a~, ~ J, ,,< t. g ' ";.I 

]'7, = {Dhk}r = _ v  mi (2 b(O) D *r..,'~-t-~ i ik + b~t) l T f  ) 

Ts,=2{c/2aBfit - -y  4...~ ~11i (b~i)_b~O)) 
aXl J't 5kni axt 

]',o, =2{8;, ara ~ mini b(I) 

:%fari-#l~ 2 [(5 (l) bfO))a;, t.b,2) cl~i a (:i;i) } = Z ~  - b  i ]'ilk I, axk J~ 5n;#c 2 ) axk #c axk 

2;; 5_b(O <o) + (2)_ 
7i2={r~l,t=Y. 5nik(2 ' -b, b ;u i -~ -  ) 

! 
]'; = ~{a=r+ ra=};, 

1 k k *  ]';, = ~ ( a a r + r a a b ,  

. ]"4 = -~ {b=pap + apbl~ }~ 

In this case, when taking (2.5) and (2.6) into account we introduced the operators 

{N},=- 2---k2TaZ IN,'tnw~dci, { H N } ; = ~  Ia~(itN)dci 
an ri m i 

In (2.12) we assumed that 

5 n bll) , b}2) 5 k op' = - g  , ~ , ,  • = x,,, = - 7 g '  c vi 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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The expression for IA) 22 is obtained from (2.11)--(2.13) by replacing ~/by 8. When calculating the 
coefficients ~ the operators (2.14) are replaced by (2.16), and relations (2.15) are replaced by (2.17). 

l'vo uw ,a,,. ( .N);= l 
o n  f l  m i 

(2.16) 

b~O) _ 5 5 
2TXiO,,, b~')=-2n~-fxiyJ, b/(2)=O (2.17) 

3. THE WEAK INELASTICITY APPROXIMATION 

When carrying out gas-dynamic calculations, formulae for the transport properties in the Navier- 
Stokes approximation are usually employed, which hold on the assumption that the contributions of 
the inelastic collision integrals inAta, Bt~,/~ are negligibly small, while the elastic collision cross-sections 
are averaged over the the internal variables. For the general case of non-equilibrium excitation of the 
internal degrees of :freedom of the molecules we than have [11, 12] 

f(I) = yt~fi(o)(p(~), ~0) = ~o~.) _ Wici" Oln Yta + Xta(w2, ~) (3.1) 
~ra 

Here Yta = nfffni, n~ is the population (the density of g2-particles), and q~([)and IVi are calculated from 
the elastic collision cross-sections and are independent of inelastic processes so that ~(~)is given by the 
well-known formula for a mixture of monatomic gases [5]. 

Approximation (3.1) is called the generalized non-equilibrium Eiken approximation [11, 12]. When 
the distribution over the internal energies is close to a Boltzmann distribution, yta is replaced by the 
equilibrium function (1.2), the quantity Xu becomes proportional to Vu, and q0(1)reduces to the form 
(1.12), but now 

• n m  i s x j  
B~ = B i, D~= D/, A .  = A~I)+A~2)Aet2, a~ 2) =nW/=~kT /=12"; (3.2) 

In (3.2) the quantities Bi ' x..'i,~.'.l~J A( 1)i andA(2) do not depend on Eta and are calculated using the elastic 
collision cross-sections, the expression for IVi is given to a first approximation by Sonin polynomials 
[12] and ~ij (1) is [he binary diffusion coefficient in this approximation. The difference between (3.2) 
and the case of a rnonatomic gas lies in the occurrence of the term with the coefficient A(2! The next 
aim is to show how the Burnett transport coefficients are calculated both in the monatomic case and 
how they are calculated takingA (2) and Cvi into account. The coefficients, expressed in terms of Fta, are 
determined, of course, by inelastic processes. 

Using relations (3.2) we will take into account the fact that 

Z Y/,~ = 1, 5". Y/~Ae,~ = 0, 3Y/o -- 0 (3.3) 
o ~ X  i 

etc. and that the operators { }* are now determined from the elastic collision integrals 

Lt.l(fO)ftt)) = ~, f v v c(O)¢(O)tm(1)'m(IY (I) (I) J 'n" t 'J i  Jj ~,vtl "t,y - ~ t ' l ~ y  )gi.idoijdcj (3.4) 

where @ = j~, and the collision cross-sections are independent of the "inner" indices to and ~, summation 
over which is carried out independently, since for elastic collisions of f2-particles with ~-particles the 
internal energies do not change. Properties (3.3) hold for Y/q,. By virtue of (3.2) we can introduce the 
notation 

(B~, D~, A~ t), A~2))- - Y~(B:, D: j, A: (0, A "(2)) 

We will first consider relations (2.3)-(2.6). With the exception of ~1 and ~] in all the operators { }n 
and { }~ the functions B~, D~ and A~ are replaced by the "monatomic" B~, D j  and A~ ~1), while the 
sums over ~ and ,qr are replaced by sums over i and j (after summation over to and qJ, respectively). 
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For example, for ~s we have 

y ( ~ A :  't, OA,. "`2) /~A~a " ~ aA~ = a Yf~ (A:(t) + A,(2)AEn) + + A:(2) 
0 1 " )  

(3.5) 

Since Ba = Bi, it is this expression that is summed over to. After summation and taking (1.3) and (3.3) 
into account from (3.5) there remains 

A,(2) cv i + OA~ 0) _ A:(2) co_._j.i = 0,4/'{I) 
kT ~T ' kT ~T 

~. deoends on Cv* and Fu and ~.* depends on Fn. These conclusions transfer directly to the coefficients 
in V(/Z)(because D~ = D~), with the exception of 5(~! ~10 - 812, 8], 5~k- Moreover, c* occurs in 5~. 
Analysis of the coefficients -¢ is quite complex, since An ~ Ai. If only A (i) is taken into account, we 

obtain qualitatively the same results as for the coefficients 8. The contribution of the "non-monatomic" 
term A~)Aeu is non-zero when the quantity N in {N}~ contains A h or (B~, Di~)OYn/OT. Instead of the 
operator {N}v it is more convenient to introduce the operators {N}(~! {N} (~ obtained from the first 
formula of (2.14) by replacing An byA(p andA (2), respectively, and the sum over D by a sum over i. 
Then 

{A~}~,={A/'(i)}~'+{A/'(2'-~'L}~ ', {B/ ' -~}  ={B/'k~}i 2) 

etc. The coefficients to are expressed in terms of F n although, of course, the expressions for them are 
simplified using (3.2). We emphasize that when using the approximate expressions for the Burnett 
coefficients, given in (2.3), (2.8), (2.12), (2.15) and (2.16), it must be recalled that in this case "qi, Dij, 
O T i  , "~, h'ti = h i are calculated from formulae for a mixture of monatomic gases; at the same time [12] 

i = nicu i (3.6) 

Polyatomicity affects the non-divergent stress tensor weakest of all, since those of its terms ~r*~ which 
are due to the spatial derivatives of the temperature and concentration are given by the "monatomic" 
formulae. This result also holds when the internal degrees of freedom have an arbitrary non-equilibrium 
[13]. 

The simplifications considered enable us to complete the calculations of the coefficients ~*, to*, ~/*, 
5*. In the general case the expressions for these have a formal form in view of the insufficiency of the 
information on the inelastic collisions. When only the elastic collisions are taken into account, even 
within the framework of the main approximations in terms of Sonin polynomials, very complex formulae 
are obtained and they are only accurate in the case of Maxwell molecules. Hence, we will immediately 
consider the case of Maxwell molecules and we will write the results in a form suitable for arbitrary 
intermolecular potentials [6]. For a simple gas the coefficients ~* and ~* turn out to be zero, and in 
the general case they can be neglected [4]. For mixtures the majority of the coefficients ~*, to*, -¢*, 8" 
are also zero and, as in [4-6], they can be neglected. Only the following coefficients are non-zero 

-- 2"qiXj t .  
~12kl = , 2 . , - - I  Mi - M j + 3AijM j )DkiDI) (3.7) 

i / ~ u ( t )  ' 

£0;2k, = ~ ~ " '°  i - M j ) D k i  Oty (3.8) 
~j ~ ,~ (1 )  ', 

"~6k* ---- ij ~'~ kn~ij(l)Dkiqjxi {2Mi(M i - My + 2AijMj)~i + 

(3.9) 
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iS 5 kn~o(l) xi j 

"txS x i )J  

In deriving formulae (3.7)-(3.10) we used formulae (1.18), (2.5), (2.6), (2.9), (2.10), (2.13), (2.14), 
(2.16) and (3.4) and the notation 

(Mi,Mj)=(mi,mj) Ai j l fl(:)(2) 3kT 
m i + m j '  = 7  ~0)(1"---"-~' ~#(1)= 16nmiMi~t i] . ) (1)  (3.11) 

The quantities ~ are defined in [4], the coefficients "qi, hi, Dij are calculated from formulae for a mixture 
of monatomic gases [5]; and h~i is calculated from (3.6). 

4. A P P R O X I M A T E  F O R M U L A E  FOR A BINARY M I X T U R E  
OF M O N A T O M I C  GASES 

We will neglect external forces and thermal and barodiffusion. Then 

Ooa~ 1).ri = O, T{ -- O, di~ = xi, a, Dt = -Up'aXi'p' c~ = 1, 7t,,i = ;L i (4.1) 

" '  - '  ~ ( l )  = "'i,~ = P P,,,, ~i# 

From (2.3) and (2.12), taking (2.4) and (4.1) into account, we obtain 

4 ~..~..{ 7 a % y.2 ~-/2 - I j: 

~4 = E 4  T]/ ~'i i 5  E 4 Vii a~i 

3 Pi \2  ) 5 xpi  

4 mi~i~, i  !., 4 ~'i r :7 . ~ 7 m i . "] 
?3 = -T. kp i , "t,l = 2.. , '7~lr l i l - ;+dTrl i  l+-;--:-A, i l 

a P i L  \ z  / a ~ j 

(the summation over i is from I to 2). 
Terms in which the other coefficients ~ and ~/occur can be combined using (4.1), the representation of 

D;; in terms of the binary diffusion coefficient D12 [5], which is inversely pro ortional to n, and the equality 
Xl~ a = --X2, a. Finally, these terms ~r(~)~ and h(~ take the form P 

(i)=al + ~ l+ar~2 +E[rl/ axl](T~xl.p)- "°" ( " " )  [ r( ) 5,,, 

- a ; m l m 2  (nlni-1]inl)/P,  ciXl,p\+~2o{! " m * "~( ~' -ml)+F~i2}(xl,axl,p) (4.3) pkT \ 1 [  

8'~')=~kf°~lmlmi(~.in2-~,2nl)+ ~ 4 n~.~ ~ + ~5'Y; ]eatllxl,13 

ei =ff';('qlP2-'q2Pl), 0{;= 2~)12 
xix2P 

The coefficients 8~2 and ~/~ in (4.3) are obtained by a corresponding combination of the coefficients 
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(3.7) and (3.10). Using (3.11) we have 

~2=2(nl2~)12mlm2~'rli[3aii~12 xi L ~ii 

*8re'm2 ~ l ~ r( )~i ~Y9=5 kp y ' '  (-1)i 4Aii MIM2~-2"/+ Mj-M i + (4.4) 
"J L :rii xi L" 

~][M.-Mi)+ A,2Mj(Mi-3Mj~--L+X2)I +2Mj xj J~ ~ .\ x I x 2 )j 

In (4.4) Y/means the sum over i from 1 to 2 whenj  :/: i, and 30 is the self-diffusion coefficient of 
the ith component. The greatest simplifications occur for the diffusion velocity 

V=~'=a2(-~P2--'~P,)Tfleap+a, P2e +5a311-2Or~21x, aVu - 

-2a3uf~'~x"l~ " 2{a3 + a2(-~xlj P2-~x21P' )} epaxL~ (4.5) 

2ra2n~12 m~m~n4~)l~ / | (P2 - 1"~ oL 2 = , o t  3 = 

prO2 pp3 ~.Pl J 

The partial quantities Tli and hi, occurring in (4.2)-(4.5), are calculated from the formulae 

00 00 00 XH.. H; _,,0o.o0r' 
"'1.1 " 'J! ] 

- xjl~ O )V~ii 1~i --,~.-~, ! 

Here, as in (4.4), i, j = 1,2, j :~ i. The functions H and A are defined in [5]. 

5. THE EQUATIONS OF T H E R M A L  AND 
C O N C E N T R A T I O N - S T R E S S  C O N V E C T I O N  

For slow flows, by definition, the following estimates hold 

u~Kn,  D/ Dt~ Kn, p= po(l +~Jp), po =nkT =const 
Kn--MRe -I ---~ 0, Re=O(l),  8p=O(Kn 2) (5.1) 

where Kn, M and Re are the Knudsen, Mach and Reynolds numbers and 8p is the dimensionless variable 
part of the pressure. If in this case, due to the boundary conditions, the characteristic relative temperature 
and concentration drops are of the order of unity, in the momentum equation and in the expression 
for the local force acting on an element of the surface of the body around which the flow occurs, we 
must take into account ~r*~l~, i.e. those terms of the stress tensor which contain derivatives of the 
temperature and concentration. Consequently, the Navier--Stokes equations in this continuous-mean 
limit are invalid, and the stresses ~r~*~ cause new effects, in particular, new types of free convection when 
there are no external forces (see the review [1]). 

For simplicity and clarity the analysis of these effects has been confined to slow steady flows of a 
simple gas [14] and an isothermal binary mixture of monatomic gases [15]. 

We will consider the more general case, following from Eqs (1.4)-(1.7), taking all the stresses due 
to the variability to T and xi into account. We will assume, naturally, that the transient effects and the 
action of external forces do not change the defining estimates (5.1). The conservation equations are 
then simplified as described previously in [14, 15]: we assumep = P0 in the coefficients of the equations, 
Eqs (1.4), (1.5) and (1.7) are simplified within the framework of the Navier-Stokes approximation, and 
in the energy equation terms with external forces and viscous stresses are dropped, i.e. (P~I~ + z~13)u,,13 
= p0Vu. (We recall that in the case considered the coefficients of dynamic viscosity, ~1 and volume viscosity 
S are commensurable; we will use the notation (2.2) for the spatial derivatives.) 
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The variable part of the complete stress tensor will only occur in the momentum equation and the 
expression for the local force. Using the fact that ~p is small, as in the approach described earlier [14, 
15], we will write it in the form 

poSp~ l  3 + X~l 5 =- X ~  + R~ot p, X = po~p + H + 0 

R~al 3 -- n~p - 0 5 ~  = ""~af~°"(I) + R n ~  +. . . . . . .  0 = ~3 rlVu + 

Hence, X includes, in particular, the volume viscosity and the Burnett terms of the scalar II, due to 
multiatomicity polyatomicity and those terms of the tensor ~r~ which contain ~13 and which are not 
taken into account :in R~r~l~. The specific features of the problem are such that X can be assumed to be 
a new gas-dynamic variable, whose structure it is not necessary to know. 

After this from the derivatives (R~r*~),l~ occurring in the momentum equation we separate the third 
derivatives of T and xi and we combine them with VX, which leads to a reduction in the order of the 
system of equation.,;. For example. 

Finally, neglecting quantities O(Kn z) compared with unity, we can reduce the divergence of the total 
stress tensor, occurring in momentum equation (1.6), to the form 

A--- X + V(~4VT) + ~V(~7jVxj) (5.2) 
1 

+ ÷ + -  
2 

(5.3) 

The quantity A is the new dependent variable of the system of conservation equations. In the cases 
considered previously in [14, 15] one can make a further simplification of expressions (5.2) and (5.3). 
In the approximation considered in Section 3, the coefficients ~ in (5.2) and (5.3) are calculated as for 
a mixture of monatomic gases. 

6. C O N C L U S I O N  

The expressions for the Burnett transport coefficients are operators of scalar functions of the velocities 
and internal energies of the molecules A, B, D and F, specified by the first approximation of the 
Chapman-Enskog method. In the general case these expressions have a formal form, which is due to 
the insufficiency of the information on the inelastic collision cross-sections and purely mathematical 
difficulties. However, the latter are not a very serious obstacle in the present state of computational 
techniques, at leasl~ for the case of a mixture of monatomic gases. The results of the corresponding 
numerical solution could be very important for analysing the applicability of approximate analytic 
expressions for the Burnett coefficients, obtained by representing the functionsA, B, D and F by sections 
of series in polynotaials. The convergence of the series for the Burnett coefficients, even in the case of 
a simple gas, is very much slower, generally speaking, than for the Navier-Stokes transport coefficients. 
This is even more true for a mixture of monatomic gases, when there are only separate results [1, 6], 
a sufficiently complete analysis has not been carried out, but there is a fact that supports this conclusion, 
namely, the approximate expressions are exact for Maxwell molecules and, consequently, can be used 
in the case of "soft:" intermolecular potentials. 
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